## **Finite Element Method**

Homework #2, Due date: 2024-05-27 (Mon.)

1. Idealize the bar structure shown as an assemblage of 2 two-node bar elements.



Figure 1. One-dimensional bar problem

- (a) (5pt.) Calculate the equilibrium equations  $\mathbf{KU} = \mathbf{R}$ .
- 2. Consider the finite element analysis illustrated in Figure 2.
  - \* Young's modulus E, Poisson's ratio v, Density  $\rho$ , Gravity g, Thickness t,

Plane stress condition:  $\begin{bmatrix} \tau_{xx} \\ \tau_{yy} \\ \tau_{xy} \end{bmatrix} = \frac{E}{1 - \upsilon^2} \begin{bmatrix} 1 & \upsilon & 0 \\ \upsilon & 1 & 0 \\ 0 & 0 & \frac{1 - \upsilon}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}$  with  $\upsilon = 0$ .



(a) (5pt.) Referring to Figure 3, establish the **H** and **B** matrices of an element, in which the nodal DOF vector for the element is defined by  $\hat{\mathbf{u}} = [u_1 u_2 \ u_3 u_4 \ v_1 v_2 v_3 v_4]^T$ .



Figure 3. The 4-node element

(b) (10pt.) Calculate the components of the **K** matrix,  $K_{U_2U_2}$ ,  $K_{U_6U_7}$ ,  $K_{U_7U_6}$  and  $K_{U_5U_{12}}$  of the structural assemblage.