기계설계 Introduction

Hyungmin Jun, Ph. D.

Multiphysics Systems Design Laboratory Department of Mechanical System Engineering Jeonbuk National University

기초개념

- 유한요소법 (FEM, Finite Element Method) 또는 유한요소해석 (FEA, Finite Element Analysis)은 단순 한 블록으로 복잡한 형상의 대상체를 구성하는 아이디어에 기반 (FEM: 편미분 방정식을 풀기위한 수치해석 기법)
- 수학적 용어로 이것은 간략히 한계개념(limit concept)의 사용. 즉, 매끄러운 대상체(smooth object)를 유한 개의 간단한 조각의 집합으로 구성하여 표현 (Discrete vs Continuous Model)

그림. 단순하고 작은 조각으로 구성된 대상체:

(a) 레고로 조립된 소방차; 그리고 (b) 벽돌요소. 보. 기둥. 평판 등 여러 가지 요소들로 조립된 가정집.

왜 FEA 인가?

- 컴퓨터는 공학의 활용도를 혁신함
- FEM은 가장 널리 응용되는 CAE(Computer-Aided Engineering) 기술
- FEA는 제품설계를 가상으로 시험하는 방법을 제공하며 개발비용을 줄이고 출시기회를 촉진

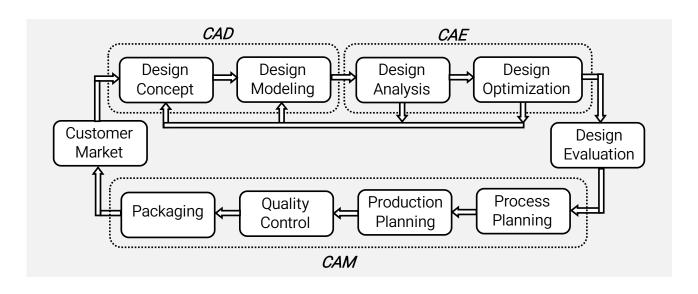


그림. 컴퓨터를 응용한 제품 설계 과정

유한요소설계의 공학적 응용

- FEM은 트러스 및 프레임 구조물 또는 복잡한 기계의 응력해석은 물론 자동차, 기차, 비행기의 동적반응에 이르기 까지 다양한 공학문제의 수학적 모델을 해결하는데 응용될 수 있음
- 유한요소설계의 응용은 자동차, 항공기, 방위산업, 소비재, 산업장비와 에너지, 수송 및 건설에 이르는 폭넓은 산업이 포함

학문분야	공학응용의 예	
구조 및 고체역학	해양 구조 신뢰성 해석, 차량 충돌해석, 핵반응기 부품의 결함해석, 풍력 터빈 날개 설계 최적화	
열전달	전자제품 냉각 모델링, 주물 모델링, 연소 엔진 열전달 해석	
유체 유동	경주용 차량 설계의 공력 해석, 건물의 공기흐름 패턴 모델링, 다공성 물체의 침투해석	
정전기학/전자기학	센서와 액튜에이터의 필드해석, 안테나 설계의 성능예측, 전자기 간섭 억제해석	

ANSYS Workbench 활용 FEA

ANSYS Workbench는 ANSYS 사에서 고급 엔지니어링 시뮬레이션 기술이 잘 연계되도록 통합시킨
 사용자 친화형 플랫폼

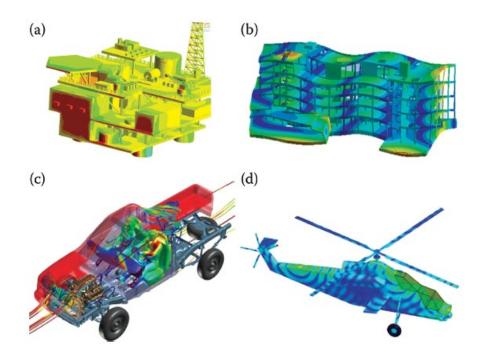


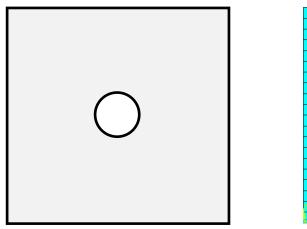
그림. ANSYS 워크벤치를 이용한 FEA 예: (a) 해양플랫폼의 풍력 시뮬레이션; (b) 콘크리트 슬라브 바닥 철골 건물의 모달응답; (c) 유동 및 열관리의 이해; (d) 헬리콥터에 장착된 안테나의 전기장 패턴.

FEA 간략한 역사

- 1943 Courant (FEM의 기초를 이룬 변분법)
- 1956 Turner, Clough, Martin, Topp 등 (강성방법)
- 1960 Clough ("유한요소"라는 용어사용, 평판문제를 해석)
- 1970s "대형컴퓨터"에서 전산화 응용
- 1980s 소형컴퓨터, 전후 처리기 (GUI) 개발
- 1990s 대형 구조물, 비선형, 동적 문제 해석
- 2000s 다물리와 다중스케일 문제 해석

FEA 일반절차

- CAD/기학학적 모델을 여러 조각으로 나누어 "격자망"을 만든다 (절점을 가진 요소의 집합)
- 각요소에 물리량의 거동을 표현
- 요소들을 절점에서 연결(결합)하여 전체 모델과 근사한 방정식계를 구성
- 하중과 경계조건을 부여 (예, 모델의 운동을 제한함)
- 절점에서 미지수를 포함하는 방정식계의 해를 구함 (예, 변위)
- 필요한 물리량 (예, 변형률과 응력)을 요소나 절점에서 계산



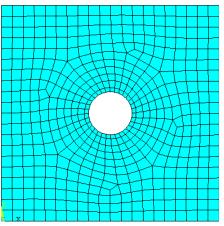


그림. (a) 구멍이 있는 평판 (CAD 모델); (b) FEM 이산화 (격자망)

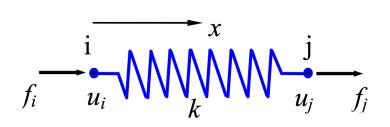
상용 FEA 소프트웨어

- **전처리** FEM 모델을 구성, 요소 성질을 정의, 하중 및 구속을 부여
- **FEA 해석**FEM 방정식계를 조합하고 해를 구함, 요소 결과를 계산
- **후처리**결과를 정렬하고 출력

중요한 모든 것은 간단하다.

Everything important is simple.

■ 한 개의 스프링 요소



두 개 절점: i, j

절점 변위: u_i , u_j (m, mm)

절점힘: f_i , f_j (Newton)

스프링 계수(강성): k (N/m, N/mm)

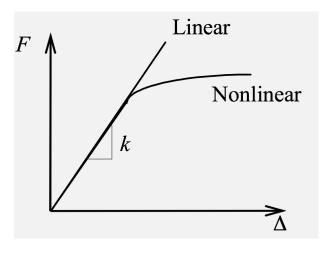


그림. 스프링에서 힘-변위 관계

■ 스프링에 대한 힘 평형 고려

▶ 절점 i 에서:

$$f_i = -F = -k(u_j - u_i) = ku_i - ku_j$$

 f_i i f

▶ 절점 j 에서:

$$f_j = F = k(u_j - u_i) = -ku_i + ku_j$$

 $F \qquad j \qquad f_j \\ \longleftarrow \bullet \longrightarrow$

▶ 행렬형태,

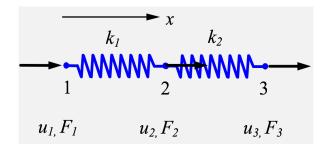
$$\begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{Bmatrix} u_i \\ u_j \end{Bmatrix} = \begin{Bmatrix} f_i \\ f_j \end{Bmatrix} \qquad \text{for } \mathbf{k}\mathbf{u} = \mathbf{f}$$

▶ 여기서
k = 요소 강성행렬

u = 요소 절점 변위벡터

f = 요소 절점 힘벡터

스프링계



▶ 요소 1에 대하여:

$$\begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \begin{Bmatrix} f_1^1 \\ f_2^1 \end{Bmatrix}$$

▶ 요소 2에 대하여:

$$\begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \begin{Bmatrix} f_1^2 \\ f_2^2 \end{Bmatrix}$$

ightharpoonup 여기서 f_i^m 은 요소 m (i = 1, 2)의 국부 절점 i 에 작용하는 (내부의) 힘

■ 요소 방정식의 결합 – 직접 방법

▶ 힘의 평형을 고려

$$F_1 = f_1^1$$

$$F_1$$
 1 f_1^1

$$F_2 = f_2^1 + f_1^2$$

$$\underbrace{\begin{array}{ccc}
f_2 & 2 & f_1^2 \\
F_2 & & F_2
\end{array}}$$

$$F_3 = f_2^2$$

$$f_2^2$$
 3 F_3

$$F_{1} = k_{1}u_{1} - k_{1}u_{2}$$

$$F_{2} = -k_{1}u_{1} + (k_{1} + k_{2})u_{2} - k_{2}u_{3}$$

$$F_{3} = -k_{2}u_{2} + k_{2}u_{3}$$

▶ 행렬형태

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$
 또는 **Ku** = **F** 여기서 K 스프링계의 강성행렬

■ 강성행렬을 "확장"하는 다른 방법:

▶ 주어진 식으로부터

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} f_1^1 \\ f_2^1 \\ 0 \end{bmatrix}$$

그리고

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ f_1^2 \\ f_2^2 \end{bmatrix}$$

▶ 두 개의 행렬식을 (즉, 중첩시켜서) 더하면

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{cases} f_1^1 \\ f_2^1 + f_1^2 \\ f_2^2 \end{cases}$$

▶ 이것은 힘의 평형 개념을 이용하여 유도했던 결과 식과 동일한 결과

■ 요소 방정식의 결합 – 에너지 방법

▶ 스프링계에 저장된 변형에너지 U를 고려하면,

$$U = \frac{1}{2}k_1\Delta_1^2 + \frac{1}{2}k_2\Delta_2^2 = \frac{1}{2}\Delta_1^T k_1\Delta_1 + \frac{1}{2}\Delta_2^T k_2\Delta_2$$

여기서

$$\Delta_1 = u_2 - u_1 = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad \Delta_2 = u_3 - u_2 = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix}$$

결과적으로

$$U = \frac{1}{2} \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u_2 & u_3 \end{bmatrix} \begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

▶ 외력의 포텐셜은

$$\Omega = -F_1 u_1 - F_2 u_2 - F_3 u_3 = -\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$

▶ 그러므로 계의 총 포텐셜 에너지는

$$\Pi = U + \Omega = \frac{1}{2} \begin{bmatrix} u_1 & u_2 & u_3 \\ u_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} - \begin{bmatrix} u_1 & u_2 & u_3 \\ F_2 \\ F_3 \end{bmatrix}$$

▶ 최소 포텐셜 에너지 원리에 따르면

$$\frac{\partial \Pi}{\partial u_1} = 0, \qquad \frac{\partial \Pi}{\partial u_2} = 0, \qquad \frac{\partial \Pi}{\partial u_3} = 0,$$

▶ 이것은 우측의 세 개의 식과 동일한 결과이다.

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases} = \begin{cases} F_1 \\ F_2 \\ F_3 \end{cases}$$

■ 경계 및 하중 조건

▶ 절점 1은 고정되어 있고 동일한 힘 P가 절점 2와 절점 3에 작용한다고 가정.

$$u_1 = 0$$
 and $F_2 = F_3 = P$

이것은

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ P \\ P \end{bmatrix}$$

정리하면

$$\begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \begin{Bmatrix} P \\ P \end{Bmatrix} \qquad \qquad \exists \exists \exists \qquad \qquad F_1 = -k_1 u_2$$

▶ 이 방정식을 풀면 다음을 얻는다

$$\begin{cases} u_2 \\ u_3 \end{cases} = \begin{cases} 2P/k_1 \\ 2P/k_1 + P/k_2 \end{cases} \qquad \qquad \square \square \square \qquad \qquad F_1 = -2P$$

■ 풀이 검증

FEA에서 구한 결과를 수계산이나 문헌의 해석적 해를 통하여 검증하는 과정은 매우 중요

- 구조의 변형된 형상

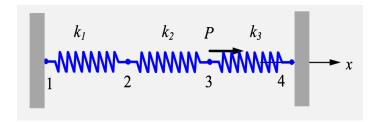
• 외력의 평형

- 구한 값의 크기 수준

- 스프링 요소에 대한 주의할 점
 - ▶ 스프링 요소는 단지 강성해석 경우에 적합하다.
 - ▶ 이 요소들은 스프링 자체의 응력해석에는 적합하지 않다.
 - ▶ 스프링에는 횡방향의 강성, 뒤틀림 스프링 요소 등이 있다.

■ 예제 1.1

예제 1.1



주어진 내용:

$$k_1 = 100 \text{ N/mm}, k_2 = 200 \text{ N/mm}, k_3 = 100 \text{ N/mm}$$

$$P = 500 \text{ N}, \ \mathbf{u}_1 = u_4 = 0$$

결정할 내용:

- (a) 전체 강성행렬
- (b) 절점 2와 3의 변위값
- (c) 절점 1과 4에서 반력
- (d) 스프링 2의 힘

■ **풀이**: (a) 요소 강성행렬은 다음과 같다 (각 값에 적합한 단위를 사용할 것)

$$\mathbf{k}_1 = \begin{bmatrix} 100 & -100 \\ -100 & 100 \end{bmatrix}$$
 (N/mm)

$$\mathbf{k}_2 = \begin{bmatrix} 200 & -200 \\ -200 & 200 \end{bmatrix}$$
 (N/mm)

$$\mathbf{k}_3 = \begin{bmatrix} 100 & -100 \\ -100 & 100 \end{bmatrix} \qquad (N/mm)$$

중첩 개념을 사용하면 스프링계의 전체 강성행렬 얻음

$$\mathbf{K} = \begin{bmatrix} 100 & -100 & 0 & 0 \\ -100 & 100 + 200 & -200 & 0 \\ 0 & -200 & 200 + 100 & -100 \\ 0 & 0 & -100 & 100 \end{bmatrix} \quad \text{or} \quad \mathbf{K} = \begin{bmatrix} 100 & -100 & 0 & 0 \\ -100 & 300 & -200 & 0 \\ 0 & -200 & 300 & -100 \\ 0 & 0 & -100 & 100 \end{bmatrix}$$

or
$$\mathbf{K} = \begin{bmatrix} 100 & -100 & 0 & 0 \\ -100 & 300 & -200 & 0 \\ 0 & -200 & 300 & -100 \\ 0 & 0 & -100 & 100 \end{bmatrix}$$

전체 계의 평형 방정식은

$$\begin{bmatrix} 100 & -100 & 0 & 0 \\ -100 & 300 & -200 & 0 \\ 0 & -200 & 300 & -100 \\ 0 & 0 & -100 & 100 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}$$

(b) 경계조건 u1 = u4 = 0, F2 = 0 and F3 = P을 적용하고 첫 번째와 네 번째 행과 열을 "제거"하면 다음을 얻음

$$\begin{bmatrix} 300 & -200 \\ -200 & 300 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ P \end{bmatrix}$$

이 방정식의 해를 구하면

(c) FE 방정식계에서 첫 번째와 네 번째 방정식으로부터 우리는 반력을 얻는다

$$F_1 = -100u_2 = -200(N)$$

$$F_4 = -100u_3 = -300(N)$$

(d) 스프링 (요소) 2의 FE 방정식은

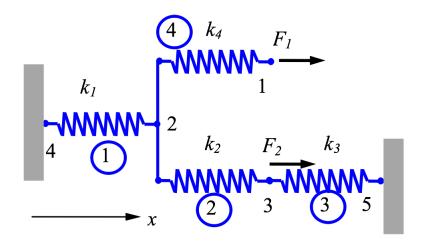
$$\begin{bmatrix} 200 & -200 \\ -200 & 200 \end{bmatrix} \begin{Bmatrix} u_i \\ u_j \end{Bmatrix} = \begin{Bmatrix} f_i \\ f_j \end{Bmatrix}$$

여기서 요소 2의 i = 2, j = 3. 따라서 우리는 스프링 힘을 다음과 같이 계산할 수 있다.

$$F = f_j = -f_i = \begin{bmatrix} -200 & 200 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} -200 & 200 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 200(N)$$

결과 확인:

■ 예제 1.2



문제: 위에 보인바와 같이 임의 숫자의 절점과 요소로 구성된 스프링계에 대해서 전체 강성행렬을 구하라.

■ **풀이**: 우선, 우리는 다음의 요소연결표(element connectivity table)을 만든다

요소	절점 i (1)	절점 j (2)
1	4	2
2	2	3
3	3	5
4	2	1

이 표를 이용, 요소의 국부 절점 번호에 해당하는 전체 절점 번호를 지정

다음으로 각 요소의 요소강성행렬을 작성

$$\mathbf{k}_1 = \begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix}$$

$$\mathbf{k}_2 = \begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

$$\mathbf{k}_{1} = \begin{bmatrix} k_{1} & -k_{1} \\ -k_{1} & k_{1} \end{bmatrix} \qquad \mathbf{k}_{2} = \begin{bmatrix} k_{2} & -k_{2} \\ -k_{2} & k_{2} \end{bmatrix} \qquad \mathbf{k}_{3} = \begin{bmatrix} k_{3} & -k_{3} \\ -k_{3} & k_{3} \end{bmatrix} \qquad \mathbf{k}_{4} = \begin{bmatrix} k_{4} & -k_{4} \\ -k_{4} & k_{4} \end{bmatrix}$$

$$\mathbf{k}_4 = \begin{bmatrix} k_4 & -k_4 \\ -k_4 & k_4 \end{bmatrix}$$

마지막으로 중첩법을 적용하면 전체 강성행렬을 다음과 같이 얻는다

$$\mathbf{K} = \begin{bmatrix} k_4 & -k_4 & 0 & 0 & 0 \\ -k_4 & k_1 + k_2 + k_4 & -k_2 & -k_1 & 0 \\ 0 & -k_2 & k_2 + k_3 & 0 & -k_3 \\ 0 & 0 & -k_1 & 0 & k_1 & 0 \\ 0 & 0 & -k_3 & 0 & k_3 \end{bmatrix}$$

Summary (요약)

■ 본 장에서 학습한 내용:

- ➤ FEM 기본 개념 소개
- ▶ 스프링계를 예로 들어 설명
- ▶ 소개된 개념과 절차는 매우 간단하지만, 다른 문제의 유한요소 설계를 이해하는데 중요한 개념